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Introduction and Motivation

♣ Q-systems are a unitary version of a Frobenius algebra object
in a C*-2-category/unitary tensor category (UTC).

♥ Introduced in [Lon94] to characterize canonical endomorphism
associated to a finite index subfactor of an infinite factor.

♠ Q-systems in a UTC give an axiomatization of the standard
invariant of a finite index subfactor [Müg03].

♦ Subfactor reconstruction: all irreducible finite index extensions
of II1-factor are crossed products N ⊂ N oH Q, where Q ∈ C
is an indecomposable Q-system, and H : C→ Bim(N) is a
UTC-action.

I Good receptacles for UTC-actions are Q-system
complete.

II Goal: Perform realization in the C*-setting.
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Q-systems in a C*-2-category C

A Q-system in C is a 1-morphism Q ∈ C(b → b) with

multiplication m = and unit i =

satisfying:

(Q1) Associativity: = ,

(Q2) Unitality: = = ,

(Q3) Frobenius: = = ,

(Q4) Separable: = .
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Bimodules over Q-systems

A bimodule X ∈ C(a→ b) over Q-systems P ∈ C(a→ a) and
Q ∈ C(b → b) consists of left and right actions

λ = and ρ = , satisfying

(B1) (associativity) = , = , = ,

(B2) (separable) = = ,

(B3) (Frobenius) = = and = = ,

(B4) (unital) = and = .

♣ (B3) and (B4) automatically follow from (B1) and(B2). [BKLR15]
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Bimodule intertwiners

Given Q-systems P ∈ C(a→ a) and Q ∈ C(b → b), and P − Q
bimodules X ∈ C(a→ b) and Y ∈ C(a→ b), we define

QSys(C)(PXQ ⇒ PY Q)

to consists of all those f ∈ C(aXb ⇒ aYb) such that

f
=

f
and

f
=

f
.

♣ This defines a C*-2-category QSys(C) with canonical embedding
ιC : C→ QSys(C), mapping C 3 c 7→ 1c , the trivial Q-system; i.e
the monoidal unit QQQ ∈ C(Q → Q).

I C is Q-system complete, iff ιC defines a
†-2-equivalence.
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Composition of 1-morphisms

To compose the P − Q bimodule AXB and the Q − R bimodule

BY C , we unitarily split the separability projector

pX ,Y := := = = u†X ,Y ◦ uX ,Y

for a coisometry uX ,Y , unique up to unique unitary.

= X ⊗Q Y u = uX ,Y .

As in [NY16, Rem. 2.6], associator αQSys(C) uniquely determined by

u

u

αQSys

=

u

u

αC

: (X ⊗ Y )⊗ Z → X ⊗Q (Y ⊗R Z ).
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C∗Alg : Right C*-correspondences

Specialize to C = C∗Alg, the C*-2-category consisting of

• 0-mor: Unital C*-algebras: A, B, C, ...

• 1-mor: Right C*-Correspondences:

AXB ∈ C∗Alg(A→ B), BYC ∈ C∗Alg(B → C ), ...
A C-vector space X with commuting left A- and right
B-actions, and a right B-valued positive definite inner
product:

〈 · | · 〉B : X × X → B.

A left A-action on X by adjointable operators: A right B-linear
map T : XB → ZB between right B-modules is adjointable if
there is a right B-linear map T † : ZB → XB such that

〈η|T ξ〉B = 〈T †η|ξ〉B ∀ ξ ∈ X , ∀ η ∈ Z .

• 2-mor: Adjointable intertwiners: f ∈ C∗Alg(AXB ⇒ AZB).
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Realization of Q-systems

Theorem: [CHPJP21]

C∗Alg is Q-system complete; i.e. C∗Alg ∼= QSys(C∗Alg).

Realization | · | : QSys(C∗Alg)→ C∗Alg is inverse †-2-functor to
ιC∗Alg : C∗Alg→ QSys(C∗Alg), is defined as follows:
♠ A Q-system Q ∈ C∗Alg(B → B) maps to |Q| := HomC−B(B → Q) :

q1 · q2 :=

q1

q2

, 1|Q| := , q∗ := q† .

I |Q| is C* via |Q| → End−Q(B �B Q), End−Q(B �B Q)→ |Q|

q 7→ q x 7→ x ,

mutually inverse unital ∗-isomorphisms.
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Realization of Q-systems...

♠ P-Q bimod X ∈ C∗Alg(A→ B) gives |X | := Hom−B(B → X ) :

p B ξ :=
p

ξ

, ξ C q :=

ξ

q

∀ f ∈ |P |,
∀ η ∈ |M |, and

∀ g ∈ |Q|.

♠ f ∈ C∗Alg(AXB ⇒ AY B) P-Q intertwiner maps to

|f | : |X | → |Y | given by |f |

 ξ

 :=

ξ

f
∈ |Y |.

|f | is |P|-|Q| bimodular.

I Unitarily splitting separability projectors pX ,Y = u†X ,Y ◦ uXY

gives the tensor structure for | · |, and the splitting of 1|Q|, yielding
the desired equivalence.
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Conclusions and Perspectives

♣ C∗Alg being Q-system complete allows for the straightforward
adaptation of subfactor results to the C∗-setting.

♠ Realization splits the problem of classifying finite index
extensions of a II1-factor N in two parts:

• (Analytical:) Constructing and classifying UTC-actions
H : C→ Bim(N).
Generalization of classification of groups actions on II1
factors, little is known for UTC.
• (Algebraic:) Classifying Q-systems in a UTC.

Non-abelian cohomology problem.
Independent of N.

♦ Q-System completion induces new actions of UTCs Morita
equivalent to C on finite extensions of N.

♥ Thank you for listening!
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